Parameterized Complexity of Kemeny Rankings

Nadja Betzler Friedrich-Schiller-Universität Jena

joint work with

Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond

> Dagstuhl seminar 09171 April 2009

Applications of voting

Voting scenarios:

- political elections
- committees: decisions about job applicants, grant proposals
- meta search engines, recommender systems
- daily life: choice of restaurant

Applications of voting

Voting scenarios:

- political elections
- committees: decisions about job applicants, grant proposals
- meta search engines, recommender systems
- daily life: choice of restaurant

Different goals:

- single winner
- set of winners
- ranking of all candidates
- decisions on several (dependent) subjects

Election

Set of votes V, set of candidates C.

A vote is a ranking (total order) over all candidates.

```
Example: C = \{a, b, c\}
```

vote 1: a > b > c

vote 2: a > c > b

vote 3: b > c > a

How to aggregate the votes into a "consensus ranking"?

KT-distance

KT-distance (between two votes v and w)

$$\mathsf{KT ext{-}dist}(v,w) := \sum_{\{c,d\} \subseteq \mathcal{C}} d_{v,w}(c,d),$$

where $d_{v,w}(c,d)$ is 0 if v and w rank c and d in the same order, 1 otherwise.

Example:

$$v: a > b > c$$

 $w: c > a > b$

$$\mathsf{KT\text{-}dist}(v,w) = d_{v,w}(a,b) + d_{v,w}(a,c) + d_{v,w}(b,c)$$

= 0 + 1 + 1
= 2

Kemeny Consensus

Kemeny score of a ranking r:

sum of KT-distances between r and all votes

Kemeny consensus r_{con} :

a ranking that minimizes the Kemeny score

 $v_1: a > b > c$ KT-dist $(r_{con}, v_1) = 0$

 v_2 : a > c > b KT-dist $(r_{con}, v_2) = 1$ because of $\{b, c\}$

 $v_3:$ b>c>a KT-dist $(r_{con},v_3)=2$ because of $\{a,b\}$ and $\{a,c\}$

 r_{con} : $\mathbf{a} > \mathbf{b} > \mathbf{c}$ Kemeny score: 0 + 1 + 2 = 3

Motivation

Applications:

- ranking of web sites (meta search engines), spam detection [DWORK ET AL., WWW 2001]
- databases [Fagin et al., SIGMOD, 2003]
- bioinformatics

[Jackson et al., IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008]

Kemeny is the only voting system that is

- neutral,
- consistent, and
- Condorcet.

Decision problems

KEMENY SCORE

Input: An election (V, C) and a positive integer k. Question: Is the Kemeny score of (V, C) at most k?

KEMENY WINNER

Input: An election (V, C) and a distinguished candidate c.

Question: Is there a Kemeny consensus in which c is at the "best"

position?

Kemeny score = 0+1+2=3

Kemeny winner: a

Known results

- Kemeny Score is NP-complete (even for 4 votes) [Dwork et al., WWW 2001]
- KEMENY WINNER is P_{\parallel}^{NP} -complete [E. Hemaspaandra et al., TCS 2005]

Algorithms:

- randomized factor 11/7-approximation [Ailon et al., J. ACM 2008]
- factor 8/5-approximation [VAN ZUYLEN AND WILLIAMSON, WAOA 2007]
- PTAS [Kenyon-Mathieu and Schudy, STOC 2007]
- Heuristics; greedy, branch and bound [Davenport and Kalagnanam, AAAI 2004], [Conitzer et al. AAAI, 2006]

Given an NP-hard problem with input size n and a parameter k Basic idea: Confine the combinatorial explosion to k

instead of

Definition

A problem of size n is called *fixed-parameter tractable* with respect to a parameter k if it can be solved exactly in $f(k) \cdot n^{O(1)}$ time.

Parameterizations of Kemeny Score

NP-c for n = 4Number of votes n [DWORK ET AL. WWW 2001] $O^*(2^m)$ Number of candidates m $O^*(1.53^k)$ Kemeny score *k*

Parameterizations of Kemeny Score

Number of votes *n* [Dwork et al. WWW 2001] NP-c for n=4Number of candidates m $O^*(2^m)$ $O^*(1.53^k)$ Kemeny score k

Further "structural" parameters:

 $O^*(32^{r_m})$ Maximum range $r_m := \max_{c \in C} \operatorname{range}(c)$ NP-c for $r_a > 2$ Average range r_a

Parameterizations of Kemeny Score

Number of votes *n* [Dwork et al. WWW 2001] NP-c for n=4 $O^*(2^m)$ Number of candidates m $O^*(1.53^k)$ Kemeny score k

Further "structural" parameters:

 $O^*(32^{r_m})$ Maximum range $r_m := \max_{c \in C} \operatorname{range}(c)$ NP-c for $r_a > 2$ Average range r_a

Average KT-distance

Recall: The KT-distance between two votes is the number of inversions or "conflict pairs".

Definition

For an election (V, C) the average KT-distance d_a is defined as

$$d_a := \frac{1}{n(n-1)} \cdot \sum_{\{u,v\} \in V, u \neq v} \mathsf{KT\text{-}dist}(u,v).$$

In the following, we show that KEMENY SCORE is fixed-parameter tractable with respect to the "average KT-distance".

- Number of candidates $m: O^*(2^m)$
- Maximum range r of candidate positions in the input votes: $O^*(32^r)$
- Average distance of the input votes: $O^*(16^{d_a})$

 $(m \ge r)$, but corresponding algorithm has a better running time)

- Number of candidates m: $O^*(2^m)$
- Maximum range r of candidate positions in the input votes: $O^*(32^r)$
- Average distance of the input votes: $O^*(16^{d_a})$

 $(m \ge r)$, but corresponding algorithm has a better running time)

Example 1: small range, large number of candidates and average distance

Example 2: small average distance, large number of candidates and range

$$a > c > b > e > d > f \dots$$

 $b > a > c > d > e > f \dots$
 $b > c > a > e > f > d \dots$

$$a > b > c > d > e > f \dots$$

 $b > c > d > e > f > \dots$
 $a > b > c > d > e > f > \dots$

⇒ check size of parameter and then use appropriate strategy

Basic idea

Average distance d_a .

Crucial observation

In every Kemeny consensus every candidate can only assume a number of consecutive positions that is bounded by $2 \cdot d_a$.

Dynamic programming

making use of the fact that every candidate can be "forgotten" or "inserted" at a certain position.

Crucial observation

Let the average position of a candidate c be $p_a(c)$.

Lemma

Let d_a be the average KT-distance of an election (V,C). Then, in every optimal Kemeny consensus r_{con} , for every candidate $c \in C$ we have $p_a(c) - d_a < r_{con}(c) < p_a(c) + d_a$.

average position of a

input votes

consensus

Let the average position of a candidate c be $p_a(c)$.

Lemma

Let d_a be the average KT-distance of an election (V, C). Then, in every optimal Kemeny consensus r_{con} , for every candidate $c \in C$ we have $p_a(c) - d_a < r_{con}(c) < p_a(c) + d_a$.

Idea of proof:

- "The Kemeny score of (V, C) is smaller than $d_a \cdot |V|$." We show that one of the input votes has this Kemeny score.
- Contradiction: Assume a candidate has a position outside the given range. Then, we can show that the Kemeny score is greater than $d_a \cdot |V|$, a contradiction.

For a position i, let P_i denote the set of candidates that can assume i in an optimal consensus.

Lemma

Let d_a be the average KT-distance of an election (V, C). For a position i, we have $|P_i| \le 4 \cdot d_a$.

Proof: Position "range" of every candidate is at most $2 \cdot d_a$.

Every candidate of P_i must have a position smaller than $i + 2d_a$ and greater than $i - 2d_a$.

Observation:

For any position i and a subset P_i of candidates that can assume i:

- \bullet One candidate of P_i must assume position i in a consensus.
- Every other candidate of P_i must be either left or right of i.

Dynamic programming table

Position *i*, a candidate $c \in P_i$, a subset of candidates $P'_i \subseteq P_i \setminus \{c\}$

Definition

 $T(i, c, P'_i) :=$ optimal partial Kemeny score if c has position i and all candidates of P'_i have positions smaller than i

$$P_i = \{a, b, c, d, e, f\}$$
consensus
$$A_i, b \mid c \mid \{d, e, f\}$$
 $P'_i = \{a, b\}$
i

Computation of partial Kemeny scores:

- Overall Kemeny score can be decomposed (just a sum over all votes and pairs of candidates)
- Relative orders between c and all other candidates are already fixed

n votes m candidates

We have $|P_i| < 4d_a$, thus there are at most 2^{4d_a} subsets of P_i . \Rightarrow Table size is bounded by $16^{d_a} \cdot \text{poly}(n, m)$.

Theorem

KEMENY SCORE can be solved in $O(n^2 \cdot m \log m + 16^d \cdot (16d^2 \cdot m + 4d \cdot m^2 \log m \cdot n))$ time with average KT-distance d_a and $d := [d_a]$.

	KEMENY SCORE
Number of votes n [Dwork et al. WWW 2001]	NP-c for $n = 4$
Kemeny score k	$O^*(1.53^k)$
Number of candidates m	$O^*(2^m)$
Maximum range of candidate positions r	$O^*(32^r)$
Average range of candidate positions r_a	NP-c for $r_a \ge 2$
Average KT-distance d_a	$O^*(16^{d_a})$

- Average distance: investigate typical values.
- Improve the running time for the parameterizations "average distance" and "maximum candidate range".
- Implementation of the algorithms is under way.
- Consider generalizations like incomplete votes and ties.
- NP-completeness of KEMENY SCORE with 3 votes?